中文字幕日韩精品欧美在线观看,日本成人不卡一区二区,国产区女主播精品视频,99人妻精品日韩欧美一区二,欧美成人一区二区三区不卡视频,国产精品久久久久久人妻系列,日韩av在线未18禁止观看,欧洲精品一区二区三区中文字幕,久久精品国产亚洲av大全

所長信箱   |    信息公開   |    內(nèi)部辦公   |    內(nèi)部辦公(舊)   |    ARP   |   圖書館   |    中國科學(xué)院   |    ENGLISH
深海科學(xué)與工程研究所
深海科學(xué)與工程研究所
當(dāng)前位置:首頁 > 學(xué)術(shù)成果 > 2025 > 論文
論文
  
論文題目  An underwater gas chromatograph for in-situ analysis of organics in deep-sea 
論文題目(英文) An underwater gas chromatograph for in-situ analysis of organics in deep-sea  
作者 Lu, Shihao;Ding, Kun;張健;Jiang, Xiaolin;Lu, Jiashan;Gao, Yan;Ning, Haijing;關(guān)亞風(fēng);Geng, Xuhui 
發(fā)表年度 2025-04-01 
 
 
頁碼  
期刊名稱 Analytica Chimica Acta 
摘要

Background: Deep-sea exploration has emerged as a pivotal area of focus in contemporary geoscience and analysis techniques. For deep-sea analysis, conventional ex-situ water analytical methodologies mean significant economic costs, while also greatly increasing the risk of sample distortion. The solution to this issue lies in in-situ analysis, eliminating the bias from sampling and transportation, and capturing spatial and temporal data simultaneously. Underwater gas chromatograph (GC) has great potential in in-situ analysis of VOCs in deep-sea, but few studies have verified its feasibility. Results: In this work, an underwater membrane inlet GC was developed and evaluated. The membrane permeated gas samples were subjected to dehydration, enrichment, thermal desorption, column injection and separation, and thermal conductivity detector detection. The overall dimension of the underwater GC is Phi 210 mm x 770 mm, 21.0 kg in water, and the design maximum working depth is 4500 m. The average power consumption is <= 35 W, and the gas consumption is 3 mL/min. The performance of the underwater GC was evaluated in the laboratory tank. The detection limits of ethane, propane, n-butane, benzene, toluene, and p-xylene in water at a 60-min sampling period were 2.4, 1.1, 0.85, 2.9, 1.2, and 0.73 mu g/L. The linear range is around 2 orders of magnitude. The underwater GC has been tested twice in the South China Sea at a depth of more than 1000 m to verify its deep-sea in-situ analysis performance. Significance: Our work confirms the feasibility of in-situ analysis of VOCs in water using underwater GC not only in the lab but in deep-sea trials. This study also provides a prototype and reference for the design of underwater analytical instruments.

 
摘要_英文  

Copyright © 中國科學(xué)院深海科學(xué)與工程研究所 備案證號:瓊ICP備13001552號-1   瓊公網(wǎng)安備 46020102000014號
地址: 三亞市鹿回頭路28號 郵編:572000 網(wǎng)站維護(hù):深海所辦公室   郵箱:office@idsse.ac.cn